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Recent years have seen an increase in research articles and reviews exploring
mathematical difficulties (MD). Many of these articles have set out to explain the etiology
of the problems, the possibility of different subtypes, and potential brain regions that
underlie many of the observable behaviors. These articles are very valuable in a research
field, which many have noted, falls behind that of reading and language disabilities. Here
will provide a perspective on the current understanding of MD from a different angle,
by outlining the school curriculum of England and the US and connecting these to the
skills needed at different stages of mathematical understanding. We will extend this
to explore the cognitive skills which most likely underpin these different stages and
whose impairment may thus lead to mathematics difficulties at all stages of mathematics
development. To conclude we will briefly explore interventions that are currently available,
indicating whether these can be used to aid the different children at different stages of
their mathematical development and what their current limitations may be. The principal
aim of this review is to establish an explicit connection between the academic discourse,
with its research base and concepts, and the developmental trajectory of abstract
mathematical skills that is expected (and somewhat dictated) in formal education. This
will possibly help to highlight and make sense of the gap between the complexity of the
MD range in real life and the state of its academic science.
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There has been increasing interest in mathematical difficulties
(MD) particularly as government departments seek to under-
stand why countries such as the US and the UK have low levels
of functional numeracy. For example, Gross et al. (2009) found
that around 25% of those able to work in the UK do not have
essential mathematical skills, and Parsons and Bynner (2005)
reported that those with poor numeracy were twice as likely to
be unemployed as those with competent levels. These low levels
of attainment have been linked with the developmental disability
dyscalculia where low mathematics achievement stands against a
background of otherwise normal skills (e.g., language, memory,
visuo-spatial attention, etc.), and is characterized as a primary
impairment of number skills (Butterworth, 2005, 2010). However
it seems unlikely that dyscalculia alone can account for the find-
ings as its prevalence rates range between 1.3 and 10.3% (Devine
et al., 2013). It seems thus likely that a large proportion of those
with poor numeracy would instead have MD, which we theorize
encompass a range of mathematical learning shortcomings that
may manifest at various developmental stages and originate in
a variety of underlying causes. To explore at what point in time
these diverse difficulties may impact on mathematic ability, this
review will explore what children are expected to learn as they go
through the mathematics curriculum. Clarity on the “expectation
trajectory” should prove extremely useful in a research field where
no comprehensive and consensus model of a “developmental

trajectory” is yet available. We will then identify a recent model
that has outlined the basic cognitive components involved in
mathematical skill development. This model lends itself natu-
rally to identifying individual causes of MD, especially when
difficulties are conceptualized as a decoupling between develop-
mental and expectation trajectory at different stages in formal
education.

DEFINING MD
Although most people, when asked, will report having struggled
with mathematics at some point in their lives, objective difficul-
ties with the learning of mathematics are said to present when
mathematical achievement is significantly lower than the aver-
age obtained by the appropriate age group. Official figures of
attainment seem to suggest that in the UK 10% of children in
formal education do not reach the required standards by ages
7 and 11 (DfES, 2012), and in the US 18% of children in for-
mal education do not reach the required standards by ages 10
and 14 (National Center for Education Statistics, 2011; see also
Mathematics Curriculum section). Individual achievement can be
measured against consensus ideal standards (e.g., Common Core
Standards for Mathematics, accessed August 9 2013, http://www.

corestandards.org/Math/Practice), overall class achievement, or
standardized tests. The latter are often based on academic and/or
pedagogical models of mathematical cognition (e.g., Wide Range
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Achievement Test-Revised (WRAT-R; Jastak and Wilkinson, 1984;
Woodcock Johnson-Revised (WJ-R) Calculation and Applied
Problems subtests; Woodcock and Johnson, 1989).

In developmental research children are typically selected as
MD from a single assessment of their mathematical ability. One
problem with selecting children this way is that there is little
consensus about the method of selection. Some have included
children who show a discrepancy between IQ and mathemat-
ics performance (e.g., Lindsay et al., 2001), but more commonly
researchers have applied a cut-off criterion where children who
perform below a given percentile on a standardized measure of
mathematics achievement are defined as having MD (e.g., Geary
et al., 2000; Butterworth, 2003; Szucs et al., 2013). Despite the
popularity of a cut-off selection there is little consensus about at
what level the cut-off criterion should be set and this can lead to
differing cognitive profiles emerging from different research stud-
ies (Murphy et al., 2007). Another problem with selection based
on a single assessment is that mathematics requires a range of
different skills and these skills are different depending upon the
child’s expected stage of their mathematical development, so the
same MD label may in principle indicate very different profiles.
For example, MD at Grade 1 could indicate inability to use place
value and perform simple additions and subtractions, whereas a
classification of MD at Grade 5 could either indicate inability to
translate numerical information into a Cartesian framework and
solve geometrical problems or still indicate lack of more basic
skills such as fluency in arithmetic operations (see e.g., Figure 1).
In other words, inclusion in a MD group can be a reflection
of these different stages of their understanding. The tests used
for screening may differ for different age groups to reflect the
expected stage of their development and so within-cohort differ-
ences are mostly meaningful in relation to age of the children and
curriculum standards. Moreover, approximately 30% of individ-
uals who are classified as having some sort of MD at any one
time will not remain in the same category (i.e., they will not
be classified as MD at further testing) over time (Silver et al.,
1999; Mazzocco and Myers, 2003). Repeated testing however is
extremely infrequent in practice and only a few targeted longitu-
dinal studies have been conducted so far (e.g., Geary et al., 2000;
Jordan et al., 2002, 2003; Vukovic and Siegel, 2010).

A host of persistent and or temporary factors have been pro-
posed as the underlying cause of MD but no universal consensus
risk assessment, prognostic and rehabilitative model is available
as yet. Severe MD are known to be associated with psycho-
logical, neurological, and genetic conditions, such as epilepsy,
Turner’s syndrome, fragile X syndrome, phenylketonuria and
ADHD (Shalev et al., 2000). Furthermore MD are often co-
morbid with delayed language development and behavioral disor-
ders (e.g., Manor et al., 2001). In cases where MD are co-morbid
with other learning difficulties or pathological conditions, it is
very difficult to discriminate whether the mathematics impair-
ment is a primary deficit or whether it is instead due to a
deficit in other functions. But even in cases where MD do not
seem to be associated with any other conditions and a clear
achievement-potential discrepancy is found in otherwise non-
problematic individuals, several potential mechanisms may be at
play. Despite this, no empirically-based normative developmental

trajectory for mathematics learning has been yet established, and
the non-problematic range of variation for age-appropriate levels
is currently untested (see also Szucs and Goswami, 2013).

MATHEMATICS CURRICULUM
It is thus informative to take a closer look at template “expected
developmental trajectories” of recent formulation, setting the
standard against which individual or cohort performance will be
contrasted within and between schools in a near future. Amount
of tolerance toward performance deviance from the standards
will probably depend on school-specific pedagogical and curricu-
lum choices and on the average achievement levels of the cohort
involved. Professional diagnoses of MD, often based on standard-
ized tests will then typically follow in the most severe cases and
dedicated support staff may be called in. It is however impor-
tant to bear in mind that difficulties with math are unlikely to
receive the same support as language difficulties, due to the only
relatively recent awakening of public awareness (e.g., Bynner and
Parsons, 1997). In this section we provide an overview of the guid-
ing principles and targets behind the mathematics curriculum for
England and the US and explore the impact that curricula can
have on MD by setting age-appropriate targets.

We have chosen to provide descriptions of the English
and US curriculum as both governments have developed
very clear standards. For those interested in a comparative
perspective, The Trends in International Mathematics and
Science Study (TIMSS) has made some comparisons on cur-
ricula in many different countries but it is beyond the scope
of this review to outline each of these and we thus redirect
the reader to the latest report (TIMSS 2011 International
Results in Mathematics, accessed 20 September 2013,
http://timssandpirls.bc.edu/timss2011/downloads/T11_IR_Math
ematics_FullBook.pdf). We will first describe two different cur-
ricula and compare their approach to learning this multi-layered
skill. We look at what each child is expected to have achieved
by the end of each level or grade, thus showing what cognitive
components may impact at different stages of mathematics devel-
opment. This discussion comes at a critical time as the national
curriculum for mathematics in England has just completed its
consultation period at the Department for Education and is due
to be implemented in September 2014. The US is already in the
stages of implementing a new curriculum and it is currently
under adoption in 45 states.

ENGLAND
In England, all children in state funded schools are mea-
sured on their academic progress at 4 stages in their school
career (approximately age 7, 11, 14, and 16). These are
known as Key Stages 1–4 (KS1-4). Mathematics is a com-
pulsory national curriculum subject at all 4 key stages (see
Table 1; a full description of the curriculum can be found at
http://www.education.gov.uk/schools/teachingandlearning/curric
ulum/primary/b00199044/mathematics). Assessment within the
first three Key Stages is measured in levels. A child can reach one
of 3 different levels of achievement (i.e., typically Level 1–3 for
Key Stage 1, Level 4–6 for Key Stage 2 and Level 5–7 for Key Stage
3, although there may be overlaps such as children leaving KS 1
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FIGURE 1 | (A) Expectation trajectory with attainment targets for Number and Algebra, Shape, Space, and Measures, and Handling Data from the UK curriculum.
On average, children reach Level 2 at age 7, Level 4 at age 11 and Level 5–6 at age 14. (B) Expectation trajectory with targets by grade from the Core Standards.
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Table 1 | Breakdown of Key Stages in the English curriculum per

school year and chronological age.

Chronological ages School years Key stage

3–5 Pre-school/reception EYFS

5–7 1–2 1

7–11 3–6 2

11–14 7–9 3

14–16 10–11 4

at Level 4 or only achieving Level 3 at the end of KS 2), ranked in
ascending order of skill complexity (see Figure 1A). In addition,
mathematics is included for 3–5 year old children within the
Early Years Foundation Stage (EYFS). This review concentrates
on this EYFS, as well as KS 1 and 2 as this encompasses the ages
(3–11 years) where most research has focused on MD, however
a brief description of KS3 is included as this includes math
skills that some exceptional children in primary school can work
toward.

At the EYFS, children are introduced to mathematics through
guidelines set out in the Problem Solving, Reasoning, and
Numeracy framework (DCSF, 2008). Within this framework,
there are skills outlined for using numbers as labels and for count-
ing (e.g., using number names accurately, counting up to four
and beyond and recognizing numerals); calculating (e.g., using
the vocabulary involved in adding and subtracting, understand-
ing “more” and “less” to compare two numbers, relating addition
to combining two groups and subtraction to “taking away”); and
shapes, spaces, and measures (e.g., using language to compare
quantities, talk about, recognize and recreate simple patterns,
using words to describe position). Both formative and summative
assessment of these skills is recorded in each child’s Early Learning
Profile. Early years practitioners are encouraged to use play as part
of the child’s learning activities and the focus is on providing the
basic skills necessary to make the transitions into KS1.

At all stages there is a general attainment target for using and
applying mathematics. However this does not have detailed stan-
dards and is included to ensure that teachers instruct students
about the connections between different areas of mathemati-
cal knowledge (National Curriculum for England Mathematics,
1999, p. 6). The skills measured at KS1 come under two broad sec-
tions called number and shape, and space and measures. Under
each section the curriculum outlines a number of standards that
set out detailed targets. For example, within the numbers sec-
tion, the target for counting states that “Pupils should be taught
to count reliably up to 20 objects at first and recognize that if
the objects are rearranged the number stays the same; be famil-
iar with the numbers 11–20; gradually extend counting to 100
and beyond” (National Curriculum for England Mathematics,
1999, p. 16). The target for number patterns and sequences is
to “create and describe number patterns” and use this knowl-
edge to make predictions. This includes patterns of multiples of
2, 5, and 10, sequences of odd and even numbers and the rela-
tionship between halving and doubling (National Curriculum for
England Mathematics, 1999, p. 16). At KS1, academic perfor-
mance is assessed via individual teacher assessment against the

National Curriculum Attainment Targets rather than by exami-
nation and pupils is expected to achieve KS1 level 2. The latest
government figures were published in 2011 and they show that
90% of children were achieving the expected level.

At KS2 the skills measured are number; shape, space, and mea-
sures, handling data, and mental arithmetic. Again each section
has standards with associated targets. For example, the target for
counting states that “Pupils should be able to count on and back
in tens or hundreds from any two- or three-digit number; rec-
ognize and continue number sequences formed by counting on
or back in steps of constant size from any integer, extending to
negative integers when counting back” (National Curriculum for
England Mathematics, 1999, p. 21). Within the handling data,
the targets for processing, representing and interpreting data
include “interpreting tables, lists and charts used in everyday
life; constructing and interpret frequency tables, representing and
interpreting discrete data using graphs and diagrams (National
Curriculum for England Mathematics, 1999, p. 27). Pupils at KS2
have formal assessments in the final year of primary school and
this provides information about the children’s math performance
before they move onto secondary schooling and KS 3 and 4.
Pupils are expected to reach a KS2 Level 4 standard in mathemat-
ics and schools were set a target to ensure 60 per cent of pupils
achieve this standard (DfES, 2010). In 2011, the percentage of
pupils attaining level 4 or above at KS2 was 84% (DfES, 2012).
Whilst this may seem a high level, there were still a substantial
number of schools with attainment below the 60% target that sug-
gests that many children are not achieving the necessary skills in
mathematics before they progress to secondary school education.

The skills measured at KS3 come under the same broad topic
headings as at KS2. As expected, the level of difficulty and range
of skills required increases. For example, within the handing data
topic children are expected to move up to a level of understanding
where they can use statistical calculations and begin to use prob-
ability. Again each section has standards with associated targets.
Similar to KS1, pupils are assessed through teacher assessment
and pupils are expected to reach either KS3 Level 5 or 6 in math-
ematics (National Curriculum for England Mathematics, 1999,
p. 7). In 2011, the percentage of pupils attaining level 5 or above at
KS2 was 81% (DfES, 2012). A more detailed representation of the
attainment targets at each level with Key stages 1–3 is presented
in Figure 1A; using and applying mathematics is not included in
this figures as there the attainment targets are not as detailed as
the other sections.

UNITED STATES
In contrast to the English system, the mathematics curriculum in
the US has been largely up to individual states (before introduc-
tion of the new curriculum); there was no common curriculum.
Nevertheless performance on these diverse curricula has been
assessed by the National Assessment of Educational Progress
(NAEP) at Grades 4 (age 9–10 years). In 2011, a nationally rep-
resentative sample of 209,000 children from 21 urban districts of
the US were assessed on five content areas: number properties and
operations (e.g., computation with or understanding of whole
numbers and common fractions and decimals), measurement
(e.g., knowledge of units of measurement for capacity, length,

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 44 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


www.manaraa.com

McLean and Rusconi Mathematical difficulties as decoupling of trajectories

area, volume and time), geometry (e.g., knowledge and under-
standing of simple shapes, and relationships between shapes such
as symmetry and transformations), data analysis, statistics, and
probability (e.g., understanding data collection and organization,
reading and interpreting representations of data, and basic con-
cepts of probability), and algebra (e.g., understanding of algebraic
representation, patterns, and rules; graphing points on a line or a
grid; and using symbols to represent unknown quantities). This
found that 82% of pupils were classed as at or above basic in
mathematics, which suggests that by age 9 years, 18% of chil-
dren experience some form of difficulty learning mathematics.
Furthermore, a similar assessment conducted with over 175,000
eighth-graders (age 13–14 years) found that the percentage at or
above basic levels drops to 73% (National Center for Education
Statistics, 2011). Thus it appears that the number of children
with difficulties increases as they progress through the curricu-
lum. Although it is not possible to compare performance between
the English and US children because the measures of assessment
differ considerably, as well as the ages of the children, it is clear
that a significant number of children in both countries are not
achieving attainment targets in mathematics. Furthermore, statis-
tics collected at later stages of schooling show that performance
drops further as children progress through their schooling and
gets decoupled from the expectation trajectory in about 20–30%
of the children (National Center for Education Statistics, 2011).

Given that the evidence suggests that there is decoupling,
it is worth describing here that a new Common Core State
Standards Initiative (National Governors Association Center for
Best Practices, Council of Chief State School Officers, 2010) has
recently proposed a math curriculum that is to be adopted by
the majority of states from 2014 (see Figure 1B). This curricu-
lum lays out the mathematics content that should be learned at
each grade level from kindergarten to Grade 8 (see http://www.

corestandards.org/Math for a full description of the curriculum).
Educators in the US and elsewhere have found it necessary to
redefine what students should be able to understand and do
when learning mathematics. They defined common core stan-
dards, while recognizing that the assumption that what is learnt
before should determine what is learnt at a later stage is unwar-
ranted, given the current state of the science. At the moment,
indeed, only partial models of learning pathways to mathematical
concepts and skills can be obtained from scientific and educa-
tion research, with very few exceptions (see e.g., LeFevre et al.,
2010). The criteria for the standards were developed from aca-
demic research; analyses of which skills are required of students
entering college and workforce training programs and by look-
ing at standards from high achieving nations and data from the
TIMSS in collaboration with some of the teaching bodies within
the US. For the purpose of this review, which concentrates on
children up to age 11, we will report the four key domains:
Operations and Algebraic Thinking; Number and Operations in
Base 10; Measurement and Data; Geometry. In addition Counting
and Cardinality is included for Kindergarten and Number and
Operations is included for Grades 3 and 5. Within each domain,
there are several standards, clustered into related standards. For
example, during Kindergarten, within the domain of Counting
and Cardinality, children are expected to acquire number names
and the count sequence sufficiently to count up and determine

the number of objects in a set and to compare numbers; within
Operations and Algebraic thinking they should understand the
concept of addition as putting together and adding to, and sub-
traction as taking apart and taking from; within Number and
Operations in Base 10 they should be able to work with num-
bers up to 19 and begin to understand place value; within
Measurement and Data, they should be able to describe and com-
pare measurable attributes such as length or weight, and classify
objects and count the number of objects in categories; and within
Geometry, they should be able to identify and describe shapes
such as squares, triangles and circles as well as analyze, compare,
create, and compose shapes (National Governors Association
Center for Best Practices, Council of Chief State School Officers,
2010; Common Core Standards for Mathematics, p. 10). The
first assessments of this new curriculum are due to begin in the
2014–2015 school year.

One of the guiding teaching principles made explicit by the
Core Standards is teachers’ focus on “mathematical understand-
ing” as the royal pathway, along with procedural learning, to
meaningful achievement. “There is a world difference between
a student who can summon a mnemonic device to expand a
product such as (a + b) (x + y) and a student who can explain
where the mnemonic comes from. [The latter] may have a bet-
ter chance to succeed to a less familiar task such as expanding
(a + b + c) (x + y).” (Common Core State Standard Initiative for
Mathematics, 2010, p. 4)

Note that the proposed assessment is tightly connected with
this definition of “understanding.” If assessment is only focused
on the ability to reach and provide the correct solution to a
given problem, it will often confound procedural or mechanic
learning with mathematical understanding. Specifically assessing
mathematical understanding means assessing: (1) the ability to
generalize knowledge to novel situations, (2) the ability to explain
the underlying meaning of procedures.

• Difficulty with math is not only defined by an inability to fol-
low the procedure but may unveil a deeper problem (i.e., a lack
of mathematical understanding)

• To assess learning, we needn’t focus exclusively on achieve-
ment: apparently normal achievement at one stage, may still
lead to later difficulties with numbers, if it is exclusively driven
by procedural learning

• Difficulties may appear at a later stage due to lack of proper
understanding at earlier stages; a child who shows MD at Grade
7 may not have understood concepts from Grade 5 and 6
despite normal achievement.

To illustrate how development is thought to develop, Figure 1B
shows the trajectory of US children following the new Common
Core State Standards curriculum.

COMPARING CURRICULA
Both the current English and new US curricula provide clear
and detailed targets for arithmetic development and how chil-
dren will build up an understanding of this complex discipline,
and there are many commonalities between them. For example,
they both have a strong focus on counting and place value within
the early years and use this skill as a basis for progression onto

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 44 | 5

http://www.corestandards.org/Math
http://www.corestandards.org/Math
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


www.manaraa.com

McLean and Rusconi Mathematical difficulties as decoupling of trajectories

calculations. Calculations are conducted first with single digit and
then multi-digit numbers. They both also have a focus on shapes,
space, and measurement that begins in early years and is included
at all levels of the curriculum. However there are also differences
that may impact on the selection of MD children. The US curricu-
lum is much more strongly focused on number and operations
within the early grades and purposely does not introduce addi-
tional topics until later schooling (The Hunt Institute, 2011). The
idea behind this was to achieve an intricate grounding in these
skills which can then be taken forward to new skills later in the
trajectory. There is also more emphasis on conceptual under-
standing than rote procedural learning. The English curriculum
does introduce these other topics. For example it has a strong
emphasis on patterns. Even at KS1, children are expected to be
able to “create and describe number patterns” whereas within the
US curriculum patterns are not included as a standard until Grade
4 (approximately 9–10 years of age). Another contrast is that the
English curriculum outlines the use of mental models for calcu-
lation. The target is to develop rapid recall of number facts and
procedures; a target which calls directly on memory processes.

EXPECTATION TRAJECTORY AND IMPLIED COGNITIVE
SKILLS
In the remainder of this article we will provide an overview of
one of the mathematical development models that, in our opin-
ion, looks promising for the identification of potential causes and
areas of intervention in MD. These can occur at any stage of pri-
mary schooling when there is a decoupling between the general
expectation and an individual’s actual developmental trajectory.

Although our knowledge on mathematical learning and cog-
nition has enormously expanded in the last few decades, there
is no consensus or comprehensive developmental trajectory for
mathematical skills, let alone a consensus model on MD. Grade
placements for specific topics are therefore suggested on the basis
of national and international comparisons, educators’ collective
experience, and researchers’ and mathematicians’ professional
judgment. By establishing a standard set of principles and objec-
tives on such basis, the initiative opens to the possibility of
improving the process on a large scale as research on learning and
effectiveness progresses.

The expected developmental trajectory, based on a consen-
sus between education professionals (Figures 1A,B) rather than
academic research output and theoretical models, will thus con-
tinue to set the main standard against which a given individual
or cohort will contrast their performance and will be deemed as
having MD or not in the years to come. The amount of tolerance
toward deviance from the standards (and thus criteria for MD)
is likely to be influenced by school-specific pedagogical and cur-
riculum choices and also on the average achievement levels of the
cohort involved. Once the most severe cases are identified as such,
professional diagnoses of MD will then be typically undertaken
and dedicated support staff may be called in—although difficul-
ties with mathematics are unlikely to receive the same support as
language difficulties (Butterworth et al., 2011).

The most straightforward type of MD (or MD risk) diag-
nosis is probably the one done at the earliest stages such as
Kindergarten and Grade 1, where although multiple cognitive

skills are already interacting to enable numerical understanding,
such understanding is still very far removed from of the level of
abstraction expected in later years. Typically diagnosis even at this
early stage follows from a child’s poor performance on a standard-
ized test of mathematics especially in comparison to performance
on measures of other abilities such as reading or IQ (e.g., Geary
et al., 2000, 2007; Murphy et al., 2007; Chu et al., 2013), although
other studies suggest that screening using experimental measures
of number sense such as approximate number system acuity or
skills in several counting tasks may be suitable (e.g., Jordan et al.,
2006, 2009; Chu et al., 2013). At this stage abstraction is very
much rooted in and inferred from concrete experiences such as
those outlined above in the Kindergarten Common Core stan-
dards. These imply very basic and foundational skills, part of
which may rest on a core number processing toolkit and basic
cognitive abilities we share with animals (see e.g., Gallistel, 1989;
Butterworth, 1999; Kawai and Matsuzawa, 2000; Dehaene, 2001).
Part already rests on an interaction with symbolic processing skills
and independent functions such as language and spatial process-
ing (see e.g., Jordan et al., 2009; Cirino, 2011). It is apparently on
these very concrete and relatively simple foundations that abstract
mathematics starts being taught and learnt. In following years
and up to the adult stage, with increasing abstraction the picture
becomes much more complex and difficult to decipher.

LeFevre et al. (2010) have recently proposed a model including
multiple cognitive factors that may contribute to the develop-
mental trajectory and determine an individual’s mathematical
outcomes throughout developmental stages. Their model is based
on the triple-code neuropsychological model of adult numeri-
cal processing (Dehaene et al., 2003), one that has collected the
widest consensus and empirical support in recent years. LeFevre
et al.’s (2010) model provides a simple and promising frame-
work that could be especially well suited to identify cognitive
precursors that may become important to fulfill expectations
at different stages of the developmental trajectory up to adult
age. No doubt, such framework would benefit from further
refinements and the inclusion of possible additional cognitive
precursors (see Figure 2). However the model does lend itself well

FIGURE 2 | Schematic of the Pathways model with predicted relations

among cognitive precursors, early numeracy skills, and mathematical

outcome measures. From LeFevre et al. (2010) Child Development. With
permission. Note this is Canadian.
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to the translation of academic concepts into educational targets by
providing a theoretically-driven framework to evaluate and pre-
dict achievement targets. Moreover, by suggesting developmental
pathways that are compatible with the guiding assumptions of
much research in adult numeracy, knowledge will be easier to
update and predictions about potential neural substrates could
also be more easily derived from adult studies.

A USEFUL WORKING FRAMEWORK
LeFevre et al. (2010) have provided an initial test of their
model in a longitudinal study with a large cohort of children
from preschool and Kindergarten (aged between 4; 5 and 6; 6
years), following their progress in mathematics for 3 years. They
hypothesized that linguistic, quantitative, and spatial attention
pathways contribute independently to number skills and that they
vary in their unique and relative contributions to mathematical
outcomes, depending on task demands. Their test for basic
quantitative knowledge (a cognitive precursor of more complex
numeracy knowledge) was an object counting task with small sets
of objects, and they used subitizing speed as a summary index
(i.e., the speed in correctly recognizing numerosities from 1 to 3).
Subitizing is generally considered a reasonable index of children’s
quantitative knowledge (see e.g., Landerl et al., 2004) although
a visuo-spatial short-term memory component may also be at
play (Feigenson et al., 2004). Linguistic skills were assessed via
measures of vocabulary and phonological awareness (Dunn and
Dunn, 1997; Wagner et al., 1999); and spatial attention skills
were measured with an adaptation for children of the spatial span
task (aka Corsi blocks test; see Passolunghi and Cornoldi, 2008).
Each of these indexes, therefore, captured a complex of skills
rather than a single element in relation with language, quantity
(or numerosity) and space, while still maintaining some level of
specificity.

As a measure of early numeracy skills, LeFevre et al., used the
number of correct responses in single and multi-digit number
naming from Arabic format and the percentage of correct trials
in a non-linguistic arithmetic task on small quantities (e.g., men-
tal operations between sets of objects; see Levine et al., 1992).
These tasks are meant to maximally tap on either the linguis-
tic or the quantity code (see Figure 2). Finally, as measures of
mathematical outcomes at Grade 2, both standardized and more
experimental tests were used: the Numeration, Geometry and
Measurement subtests from the KeyMath Test-R (Connolly, 2000)
and the Calculation tests from the WJ Tests of Achievement-
R (Woodcock and Johnson, 1989) covering most of the skills
required by Grade 1 and 2, a Number Line task (Laski and Siegler,
2007) requiring to place numbers in the appropriate position on
a line whose extremes are labeled as 0 and 1000 and taken as
a measure of coordination between symbolic and quantitative
knowledge, and a comparison task between single digit numbers
whose physical size was orthogonally varied with their numerical
size, tapping on symbolic but especially quantitative knowledge
(Landerl et al., 2004; Holloway and Ansari, 2009).

The thickness of the connectors in Figure 2 between cognitive
precursors (left-hand boxes) and numerical knowledge (central
boxes) indicates the relative importance of the contribution of
cognitive precursors to early numeracy skills measures as they

emerged from a multiple regression analysis. Measures of linguis-
tic skills predicted up to 30% of the variance in the symbolic
number system task, whereas subitizing latency predicted up to
32% of the variance in the non-linguistic arithmetic task. Neither
of them predicted performance in the alternative number task.
Spatial attention was apparently involved in both the symbolic
and the magnitude task (predicting 16 and 15% of the variance
respectively). Three different factors, corresponding to the lin-
guistic, spatial, and quantitative pathways, were entered in a fur-
ther multiple regression analysis to assess their predictive power
on the standardized and experimental mathematical outcomes
(right-hand boxes). Overall they accounted for a substantial pro-
portion of variability (26–56%) in both the conventional and the
experimental outcome measures. As shown by connector thick-
ness, the relative contribution of each pathway varies with the
outcome considered.

The linguistic pathway (i.e., individual measures of vocabulary
and phonological awareness and number naming) contributed
to all mathematical outcomes, but especially those related with
geometry and measurement, numeration and calculation (i.e.,
classical tests of school achievement) and the Number Line task.
The spatial attention pathway resulted involved in all outcomes,
except for the experimental magnitude comparison task, whereas
the quantitative pathway was found to contribute to magnitude
comparison, numeration, number line and calculation but not to
geometry and measurement.

In summary, most mathematical outcome measures in the
LeFevre et al. (2010) study, including standardized batteries,
depend on the functioning of the symbolic number system, with a
heavily linguistic component. Whether the symbolic number sys-
tem may itself be related to the quantitative pathway was assessed
with a more complex quantitative task, non-symbolic arith-
metic by Gilmore et al. (2010). They suggested that “children’s
non-symbolic numerical abilities [. . .] appear to contribute to
their achievement in mathematics primarily because they are
associated with children’s successful learning of number words
and symbols, which figures prominently in [. . .] the kindergarten
mathematics curriculum and the assessment of mathematical
learning [. . .]” (Gilmore et al., 2010; p. 8). Furthermore, Gilmore
et al. (2010), had partialled out the effect of literacy achievement
and verbal intelligence. On the whole, these findings would sug-
gest that primary impairments in the use of the symbolic system
(Ansari, 2008) and/or linguistic deficits (Manor et al., 2001)
will exert a pervasive negative effect on individual trajectories of
mathematical achievement. For example, in the UK curriculum
the rudiments of an abstract symbolic number system beyond
10 (i.e., beyond the number of fingers, typically used as concrete
and intuitive representations for both cardinality and ordinality)
constitute attainment targets at Level 2. Thus the developmental
trajectory of pupils with impairment in the symbolic pathway
could start diverging at about age 7 and become more and
more decoupled from the expectation trajectory throughout
schooling. The quantitative pathway alone, indeed, will become
progressively inadequate to handle the abstraction of concepts
and complexity of skills expected in later years (e.g., numbers
of increasing size, mental arithmetic with two and three digit
numbers, decimals, recognition of pattern in the number series,
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negative number arithmetic, linear and quadratic equations).
Under the curriculum proposed by the Standards, difficulties
would emerge even earlier, between Kindergarten and Grade 1
(i.e., ages 5 and 6), due to the early introduction of place value,
with two-digit numbers and operations between them (see also
Figure 3). MD from impairment in the symbolic system at age
5 in the US might therefore be diagnosed as MD at age 7 in the
UK. Based on adult models of the role of language in number
processing, specific impairments in the language system will
particularly compromise the learning of rote memory arithmetic,
and in particular multiplications and complex mental operations
(Dehaene et al., 2003). Major difficulties will thus start to emerge
when pupils reach US Grade 3 or UK attainment Level 3 (i.e.,
around the age of 8), particularly if children do not spontaneously
discover alternative strategies to verbal representations. Teachers
may also teach alternative strategies.

What could be considered as core numerosity processing
(see e.g., Butterworth, 2010) or analogue magnitude process-
ing (Dehaene et al., 2003), and whose selective impairment is
thought to underlie developmental dyscalculia (e.g., Rubenstein
and Henik, 2009) does not appear to contribute as importantly to
tasks in the mathematics curriculum tapping geometry and mea-
surement. In the presence of a problem in the quantitative system,
achievement tests involving these tasks may therefore be rela-
tively spared when compared to tasks of numeration, calculation,
number comparison etc. from the earliest age. In a recent training
study, Park and Brannon (2013) reported a relation between adult
performance improvements in tasks tapping the approximate
number system (a likely quantitative precursor), and performance

improvements in corresponding symbolic arithmetic tasks. This
connection between an approximate number system and math-
ematics proficiency would seem also to be domain-specific, and
Dewind and Brannon (2012) showed that improvement in a com-
parison task involving the approximate number system did not
generalize to a homologue visuo-spatial task. This calls the pre-
diction of developmental dissociations between difficulties arising
from impairments at the level of non-verbal, non-symbolic quan-
tity processing and impairments in auxiliary domains—even if
conceptually related with quantity, such as spatial processing—
with the latter exerting more subtle and elusive effects on the
developmental trajectory of number processing as opposed to
measurement and geometry skills.

In LeFevre et al.’s (2010) study, acomplex measure of spatial
attention and working memory was found to contribute to geom-
etry and measurement, and all other outcome measures, except
for symbolic magnitude comparison with single digits. Purely
attentional deficits may therefore compromise most achievement
tasks except for those primarily resting on the core quantitative
pathway. MD will thus be more subtle than with those deriv-
ing from impairment in the symbolic and quantitative pathways,
yet equally spread across attainment targets from UK Level 2 or
US Grade 1, when place value and visuo-spatial geometric prop-
erties are taught. Additional strain may be put on the system
when working toward UK Level 5 (or at US Grade 5), with the
introduction of the Cartesian system and connections between
number, geometry, and measurement. It is however also possi-
ble that this may in fact provide a novel and affordable method
to parse space, thus improving these children’s performance in

FIGURE 3 | Hypothetical coupling of expectation and developmental trajectory. Targets for Kindergarten and the first five grades have been associated
with their most likely cognitive precursors on the basis of an expanded Pathways model (see LeFevre et al., 2010 and our section “Expectation Trajectory and
Cognitive Skills”).
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mathematics. An interesting possibility that would need to be
explored with ad hoc empirical studies.

It may be surprising that there is not an independent pathway
for working memory within this framework as many researchers
have found that performance on working memory measures
can specifically predict mathematics performance (e.g., Holmes
and Adams, 2006; Bull et al., 2008). Indeed research that has
specifically explored the impact of working memory subsystems
(phonological loop, visuo-spatial sketch pad (VSSP), and cen-
tral executive) in the longitudinal development of mathematical
learning has suggested that the VSSP may be important for
younger children (e.g., Bull et al., 2008; Holmes et al., 2008;
Simmons et al., 2008). One suggestion is that young children’s
mental representations of quantities rely heavily on visual-spatial
representations, as they have not yet developed a spontaneous ver-
bal rehearsal system. As children progress through school they
increasingly use verbal representations of quantities such as num-
ber words and the role of the VSSP has less impact (see Rasmussen
and Bisanz, 2005). One reason for apparent missing pathway is
that LeFevre et al.’s description differs from others. For exam-
ple, many studies have included variations of the Corsi Blocks
task as their measure of visuo-spatial working memory. LeFevre
et al., also used a version of this task but describe it as a spatial
attention task due to problems distinguishing the nature of the
task. Nevertheless LeFevre et al., note that a more detailed account
about the role of working memory in mathematical learning may
be necessary. In particular they suggest that working memory
may play an important role in integrating knowledge from the
linguistic and quantitative pathways.

More recently LeFevre et al.’s (2010) basic architecture was
used as a working framework by Cirino (2011) who maintained
the original conceptual distinctions but expanded the range of
tasks (symbolic vs. non-symbolic) used to measure the effects of
quantity precursors in Kindergarten on a single outcome mea-
sure (i.e., small written sums). Interestingly, the symbolic (with a
strong linguistic element) vs. non-symbolic distinction between
precursors of later mathematical outcomes was also highlighted
by Jordan et al. (2006, 2009), who reported how children’s socio-
economic status defined by their family income level interacts
with the symbolic/linguistic pathway (but also see Mejias and
Schiltz, 2013). That is to say children from low-income fami-
lies will enter primary school with an initial disadvantage due
to poorer start-up symbolic/linguistic resources despite showing
in most numerical tasks (e.g., verbal and non-verbal counting,
verbal and non-verbal arithmetic, estimation, number patterns)
similar growth trajectories as children from high-income families,
with the notable exception of verbal story problems. Therefore,
given the pervasive effects that the symbolic number process-
ing pathway may exert on later mathematical outcome (see also
Jordan et al., 2002), and their characterization of MD as difficulty
in story problems and arithmetic combinations], children from
low socio-economic backgrounds should be considered at higher
risk for MD and intervention strategies could be specifically
devised from Kindergarten. This point has also been corrobo-
rated more recently by Gilmore et al. (2010) who highlighted
two factors contributing to mathematics achievement: a non-
symbolic aptitude, which is essentially insensitive to differences in

socio-economic status, and symbolic ability that may be respon-
sible for the higher achievement levels found in association with
higher socio-economic status. They point out that preschool
exposure to conventional symbol systems is higher in higher for
children of wealthy families (Jordan et al., 1992; Griffin and Case,
1996), therefore the achievement gap due to impoverished sym-
bolic environment may be eliminated by targeted interventions
at Kindergarten (Siegler and Ramani, 2008). Interestingly, such
interventions may also provide useful evidence for the putative
causal link between symbolic skills and the developmental tra-
jectory of mathematics learning, which as of now can only be
two co-varying variables due to the correlational character of the
evidence reported above.

It has also been shown that reading difficulties predict lower
number skills especially those implying verbal sequential fac-
tors, and should therefore be treated as risk factors too (Jordan
et al., 2006). Manor et al. (2001) established a relation between
developmental language disorders and measures of mathematical
outcomes. In particular, both receptive and expressive language
impairments were associated with low scores in reasoning princi-
ples and arithmetic operations. Only expressive deficits, however
predicted poor performance in counting principles. Despite the
sometimes different theoretical frameworks adopted by different
research groups, especially regarding whether a single number
core processing module or domain general skills are at the ori-
gin of difficulties with mathematics (see e.g., Bull et al., 2008;
Locuniak and Jordan, 2008; Desoete et al., 2009; Geary et al.,
2009), data suggest that mathematics difficulties at Kindergarten
will persist and predict an atypical growth rate in the following
years (Morgan et al., 2009). This is not to say that MD can-
not appear after an otherwise normal developmental trajectory in
successive years or a child who has experienced difficulties since
Kindergarten cannot benefit from interventions at a later stage
(the predictive power of early mathematics difficulties on later
difficulties never reaches 100%, and MD can also appear at later
stages).

ADDING NEW COMPONENTS TO THE ORIGINAL
FRAMEWORK
As previously mentioned, the merit of LeFevre et al.’s (2010)
model consists of bringing together in a simple but comprehen-
sive framework the main cognitive modules that are expected
to interact and inform mathematical outcomes across the nor-
mal developmental trajectory, rather than focusing on one single
cognitive domain. It does so by paralleling a well-known neu-
ropsychological model of adult mathematical cognition (Dehaene
et al., 2005). Specifics about the component pathways and their
operationalization’s (e.g., whether approximate quantities and
numerosity processing should be considered as partially indepen-
dent subcomponents of the quantity pathway) can be improved
by testing predictions and expanding the model’s evidence base.
Interesting connections with MD can be established by classify-
ing groups of individuals (e.g., children with Williams syndrome
vs. children with spina bifida vs. dyslexics) based on the pathway
that may be most problematic. With the model, MDs character-
ized by different patterns of development-expectation decoupling
and educational outcomes may be diagnosed and assessed (e.g.,
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LeFevre et al., 2010). To this purpose, and based on the literature
on both adult and developmental number processing, we would
like to suggest that additional components may be useful to create
a model to diagnose/assess/predict MD.

For example in addition to spatial and linguistic precursors,
body representations may be related to numeracy skills, as sug-
gested by the interactions between finger gnosis and number
processing in both adults and children. In a few studies, MD was
reportedly associated with impairments of finger gnosis, left-right
orientation and writing, also known under the name of develop-
mental Gerstmann syndrome (see e.g., Miller and Hynd, 2004).
In the past, this was typically taken as evidence for a functional
connection between all of these abilities and between finger gno-
sis and the development of number skills in particular (see e.g.,
Butterworth, 1999). The connection seems to be corroborated by
the fact that acquired brain lesions localized to the left posterior
hemisphere often produce the adult version of Gerstmann’s syn-
drome (a cluster of neuropsychological symptoms characterized
by left–right confusion, agraphia, acalculia, and finger agnosia;
Gerstmann, 1940). Likewise, TMS studies have identified contigu-
ous neural substrates in adult participants with causal effects on
numerical processing, finger gnosis, and categorical left–right dis-
crimination (Rusconi et al., 2005; Hirnstein et al., 2011). Without
undermining the significance of these associations, Kleinschmidt
and Rusconi (2011) have recently suggested that the Gerstmann
functions, including finger gnosis and calculation may indeed be
supported by a network of cortical regions in the left posterior
parietal lobe whose intraparietal projections converge toward a
common subcortical bottleneck location. A small and localized
lesion to the bottleneck location will cause systematic associa-
tion of symptoms. The adult version of Gerstmann’s syndrome
would thus be characterized as an anatomical syndrome, meaning
that the four symptoms may not be functionally interdependent,
and yet still subjected to the very same local neural efficiency
parameters and maturation constraints. This may also suggest an
anatomical mechanism for the somewhat elusive developmental
version of Gerstmann syndrome and provide an additional cluster
of non-numerical predictors—although not necessarily cognitive
precursors - of mathematics achievement, that could help identify
a neurofunctional locus for certain patterns of MD.

At least a transient phase of finger counting and finger cal-
culation almost invariably precedes the mature mathematical
cognition in the developmental trajectory, although educators
may have different views on its utility (e.g., Moeller et al., 2011).
In fact, the use of fingers to represent number is ubiquitous across
ages and cultures (Dantzig, 1954; Butterworth, 1999). Children
use finger counting as an initial strategy to understand and keep
track of counting and calculate, even if this is often seen as
just a very primitive strategy (Geary et al., 2007). Amputees
and children with congenital agenesia of hands and fingers use
phantom fingers as quantifiers (Poeck, 1964). Finger counting
strategies also tend to be used by older children and adults with
MD, to make up for deficient mental number representations.
Furthermore, performance in tests of finger gnosis before for-
mal schooling selectively predict mathematical outcomes at a later
age (e.g., Fayol et al., 1998; Noël, 2005) and it has been reported
that early finger training may improve numerical abilities at

a later stage (Gracia-Bafalluy and Noël, 2008; but see Fischer,
2010). According to a very popular idea, these latter findings are
consistent with numerical knowledge being represented together
with the same sensory and motor features that are engaged dur-
ing learning (see e.g., Fischer, 2012). There is indeed empirical
evidence that traces of finger counting habits influences—not
necessarily always in a beneficial way—symbolic number repre-
sentations and calculation processes (Domahs et al., 2008, 2010;
also see Fischer and Brugger, 2011) for a review on other relevant
interactions). Another possibility is that the crosstalk between
numerical and body representations is not integral to numerical
representations but provides a means to offload and free work-
ing memory resources while processing numerical information in
a task-dependent way (e.g., Fischer, 2006). Of relevance to this
context, however, are not the exact mechanisms underlying the
cross-talk between fingers and numbers and whether traces of
finger processing are indeed integral to the numerical representa-
tion. The consensus and empirical evidence that finger counting
does play a role in the development of numerical skills could thus
suggest a useful expansion and improve the predictive power of
the LeFevre et al. (2010) model by including a dedicated body
representation component amongst the cognitive precursors.

In addition, as noted above, although working memory is
included in the LeFevre et al. (2010) framework as part of spa-
tial attention pathway, an additional or more detailed component
may be required to address the more complex aspects of math-
ematical development. For example, LeFevre at al. note that
working memory may be involved in the coordination of infor-
mation from the world and from memory. The central executive
is usually considered the working memory subsystem responsible
for coordinating information, including controlling attentional
resources (Baddeley, 2003). There have been many studies which
have shown that children with MD show impaired performance
compared to typically developing children on tasks which are
designed to tap into central executive processes (e.g., Bull et al.,
1999; Geary et al., 2004; McLean and Hitch, 1999). However the
role of the central executive within mathematical development
is less well understood. Recently, LeFevre et al. (2013) exam-
ined executive attention, which they suggest encompasses exec-
utive functioning and the central executive in working memory,
in children’s development of mathematics. Children completed
executive attentional tasks and mathematical tasks (specifically
tasks on knowledge of the number system and arithmetic flu-
ency) at either 8 or 9 years of age. They repeated the mathematical
tasks 1 year later. Using structural equational modeling, LeFevre
et al., showed that executive attention was concurrently predic-
tive of both knowledge and fluency but predicted growth in
performance only for fluency. LeFevre et al., conclude that the
executive functioning may be particularly important in the early
years of mathematical development when new tasks are being
taught and learned. We would also expect that executive function-
ing, rather than being a cognitive precursor, may play a crucial
role in integrating knowledge from the linguistic and quantitative
pathways.

In Figure 3 we show how the model could be used to draw
predictions on the cognitive abilities that are necessary at each
developmental stage as specified in the Core Standards. This in

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 44 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


www.manaraa.com

McLean and Rusconi Mathematical difficulties as decoupling of trajectories

turn will suggest what cognitive problems may subtend MD at
different stages.

INTERVENTIONS
One may assume that precise knowledge of the mechanism(s)
underlying an individual’s difficulties with mathematics may be a
prerequisite for devising tailored teaching, remediation and inter-
vention strategies. Therefore it is important to have a well-defined
model that can encapsulate where difficulties may occur and how
remediation can pinpoint these difficulties.

All researchers and educators agree that mathematic compe-
tence is not a single well-defined skill but encompasses a range
of skills. What is clear from the expectation trajectory is that
low attainment, particularly measured at single assessment, can
also reflect a single or multitude of difficulties with mathemati-
cal concepts. The evidence suggests that although there may be
around 2–10% of the population with the severe specific diffi-
culty dyscalculia, it is also likely that the 15–20% described in the
Parsons and Bynner (2005) report have difficulties with only cer-
tain aspects of mathematics. These difficulties may be sufficient
to hinder their education and employment prospects. Of course
there may be other reasons for low achieving population such as
math anxiety (e.g., Ashcraft, 2002) or poor teaching. However it is
often difficult to disentangle these from poor attainment. In addi-
tion, as noted above, some problems may be due to co-morbid
developmental disorders such as dyslexia or ADHD (Rubenstein
and Henik, 2009). Nevertheless even those with co-morbid con-
ditions will have difficulties which impact at different stages of
mathematic development.

Thus the question remains on the best way to assist those
who do have underlying difficulties. In a series of well designed
empirical studies, Fuchs and colleagues (see Fuchs et al., 2009,
2013; Powell et al., 2009; Powell and Fuchs, 2010) developed and
tested the effects of extensive training of children with MD on
targeted foundational skills, for example counting or retrieval,
on typical math achievement tasks (e.g., Number Combinations).
They derive the rationale for their interventions (which are also
available commercially as the software Pirate Math) from existing
empirical evidence linking specific foundational skills with more
complex math and curriculum targets. Dowker (2009) noted that
there has been an increase in the number of intervention pro-
grams as the government and charities highlight problems in
numeracy. Dowker is very clear in her recommendations that
any intervention should be individualized to reflect the fact that
math is a multi-layered skill and difficulties can occur at dif-
ferent stages. Recent reviews of the efficacy of interventions for
students who are showing signs of struggling with numeracy
(e.g., Kroeger et al., 2012), have tried to assess a selection of
the current range of interventions available and suggest future
directions. Kroeger et al. (2012) evaluated 20 commercially avail-
able programs (mostly available in the US) by exploring whether
each program was developed from neuroscientific research, what
cognitive processes were targeted by the program, and the kind
of research that supported the program. They explicitly imple-
mented this approach because they believe that the most effective
intervention practices would integrate research from neuroscien-
tists and cognitive developmental psychologists as well as math

educators. In particular it has been shown that the impact of neu-
roscientific data can influence the general public perception of
research, including interventions, as brain research appears more
compelling than behavioral data (Weisberg et al., 2008). However,
for an intervention to be deemed successful it must build on
evidence from all three fields.

Kroeger et al. (2012) found that only three programs included
publisher-reported use of neuroscience research in their develop-
ment, and here they focused on the triple code model (Dehaene
et al., 2003). These were Fluency and Automaticity through
Systematic Teaching with Technology (FASTT Math), Number
Worlds (NW), and The Number Race (NR). In addition only
FASTT Math, NW and NR plus two others (Accelerated Math
(AM), Corrective Mathematics (CM) were supported by empir-
ical, peer-reviewed research on their efficacy. Their review con-
cluded that although 4 of these 5 intervention programs showed
improvements on test scores, the programs emphasize represen-
tation of number sense, akin to the quantitative pathway, math
facts and working memory. For example, in the NR, quantitative
pathways and math facts are trained. Children play a computer
game that requires them to first carry out a numerical compari-
son task; they must choose the larger of two quantities of treasure
faster than a competitor. The competitor is essentially the com-
puter program represented by a character on the screen, and the
difference in magnitude between the two quantities can be large
or small to manipulate difficulty. Furthermore the quantity can be
represented in a non-symbolic format, sets of gold pieces, in sym-
bolic Arabic numerals or symbolic number words. Presenting the
numerical information in different ways is designed to strengthen
links between representations of number (Wilson et al., 2006). At
a higher level of difficulty, the quantities can only be worked out
on completion of arithmetic problems (e.g., is 6–2 bigger than
4 + 0?). On completion of the comparison task, the game moves
counting task. The set of treasure they chose in the comparison
task is placed next to treasure from a competitor. The child
then races against their competitor by moving the same number
of squares in grid as they have pieces of treasure. This is done
by counting each piece of treasure one at a time and hence
loading on one-to-one correspondence and cardinality. Kroeger
et al.,note that few intervention programs have focused on prob-
lem solving or executive function although the CM program may
load onto both of these as it attempts to teach students rules and
strategies to help solve arithmetic problems. Executive function
is potentially one cognitive process that underlies mathematical
understanding and, in general, it appears that apart from number
sense there is little intervention targeting the underlying cognitive
processes. To mesh with our expectation trajectory—intervention
could be targeted where a difficulty is found.

Another commercially available intervention, which has been
developed in the UK and not included in Kroeger et al., is Catch
Up Numeracy. In this intervention program children are individ-
ually assessed and provided with targeted sessions building on
their strengths and weaknesses. This is low intensity intervention
program and children complete just two 15 min remediation ses-
sions a week. However it has shown some good improvements
with children who have weaknesses in their math performance
but are not necessarily dyscalculic. For example, Holmes and
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Dowker (2013) showed that children identified as MD who fol-
lowed the Catch Up program for 30 weeks showed significant
gains in their numeracy. These gains were twice as large as other
children with MD who had received no intervention and more
than the gains expected from typically developing children.

One of the interventions mentioned here, the Number Race
(http://www.thenumberrace.com), is freely available and is very
explicitly connected with the adult neuropsychological model
that also shaped LeFevre et al.’s (2010) framework. More recently
the researchers have added another game to develop fluency in
arithmetic, the Number Catcher (http://www.thenumbercatcher.
com/). Peer reviewed research is not available for the Number
Catcher but research in the Number Race suggests effects on
core numerical processing. For example, Räsänen et al. (2009)
tested 30 preschoolers who had been identified as having poor
numeracy skills and compared them to 30 typically developing
children. Half the children followed a software program called
Graphogame-Math that trains children to compare small numer-
ical differences; and half the children played the Number Race
games. After 3 weeks of playing the games 10–15 min a day,
both experimental groups demonstrated improved performance
in number comparison but did not improve in other number
skills such as verbal and object counting. The developers thus
suggest that their programs should be used in conjunction with
other techniques. Both the Number Race and Number Catcher do
make use of game software to engage children with mathematics.
This application of games for an educational purpose, or gamifi-
cation, is becoming an increasingly more popular way to motivate
learners (e.g., Deterding, 2012).

In summary, there is growing demand and concurrent devel-
opment of interventions for math difficulties. There is some
evidence to suggest that intervention can improve scores on
mathematics tests but also a warning that the intervention is not
targeted sufficiently at the underlying cognitive skills of math-
ematics nor designed for individuals who may show differing
profiles of difficulties. Future interventions should draw upon
the growing body of evidence that mathematic difficulties can
occur at different stages and for different underlying reasons.
Some existing intervention programs might eventually lead to
significant improvements in mathematical understanding if the
program attempts to pinpoint specific skills that are required for
mathematical competence. That should be attuned to different
cognitive pathways and combination of skills at every develop-
mental stage (e.g., Figure 3) and should be conducted within a
theoretically-driven framework. In this way, applied can also be
used to feed back into theory and contribute with new knowledge
toward the delineation of an empirically-based developmental
trajectory.

AUTHOR CONTRIBUTIONS
The authors contributed equally to the writing of this paper. The
order of authorship is arbitrary.

ACKNOWLEDGMENTS
The authors would like to thank Holly Branigan and David Burns
(helpingwithmath.com) for their helpful comments on a previous
version of the manuscript.

REFERENCES
Ansari, D. (2008). Effects of development and enculturation on number represen-

tation in the brain. Nat. Rev. Neurosci. 9, 278–291. doi: 10.1038/nrn2334
Ashcraft, M. H. (2002). Math anxiety: personal, educational, and cognitive conse-

quences. Curr. Dir. Psychol. Sci. 11, 181–185. doi: 10.1111/1467-8721.00196
Baddeley, A. (2003). Working memory: looking back and looking forward. Nat.

Rev. Neurosci. 4, 829–839. doi: 10.1038/nrn1201
Bull, R., Espy, K. A., and Wiebe, S. A. (2008). Short-term memory, working

memory, and executive functioning in preschoolers: longitudinal predictors of
mathematical achievement at age 7 years. Dev. Neuropsychol. 33, 205–228. doi:
10.1080/87565640801982312

Bull, R., Johnston, R. S., and Roy, J. A. (1999). Exploring the roles of the visual-
spatial sketch pad and central executive in children’s arithmetical skills: views
from cognition and developmental neuropsychology. Dev. Neuropsychol. 15,
421–442. doi: 10.1080/87565649909540759

Butterworth, B. (1999). What Counts: How Every Brain is Hardwired for Math. New
York, NY: The Free Press.

Butterworth, B. (2003). Dyscalculia Screener. London: nferNelson Pub.
Butterworth, B. (2005). The development of arithmetical abilities. J. Child Psychol.

Psychiatry 46, 3–18. doi: 10.1111/j.1469-7610.2004.00374.x
Butterworth, B. (2010). Foundational numerical capacities and the origins of

dyscalculia. Trends Cogn. Sci. 14, 534–541. doi: 10.1016/j.tics.2010.09.007
Butterworth, B., Varma, S., and Laurillard, D. (2011). Dyscalculia: from brain to

education. Science 332, 1049–1053. doi: 10.1126/science.1201536
Bynner, J., and Parsons, S. (1997). Does Numeracy Matter. London: Basic Skills

Agency.
Chu, F. W., Vanmarle, K., and Geary, D. C. (2013). Quantitative deficits of preschool

children at risk for mathematical learning disability. Front. Psychol. 4:195. doi:
10.3389/fpsyg.2013.00195

Cirino, P. T. (2011). The interrelationships of mathematical precursors in kinder-
garten. J. Exp. Child Psychol. 108, 713–733. doi: 10.1016/j.jecp.2010.11.00

Connolly, A. J. (2000). KeyMath-Revised/Updated Canadian Norms. Richmond Hill:
PsyCan.

Dantzig, T. (1954). Number: The language of science. New York, NY: MacMillan
DCSF. (2008). Practice Guidance for the Early Years Foundation Stage.
Dehaene, S. (2001). Précis of the number sense. Mind Lang. 16, 16–36. doi:

10.1111/1468-0017.00154
Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2003). Three parietal

circuits for number processing. Cogn. Neuropsychol. 20, 487–506. doi:
10.1080/02643290244000239

Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2005). “Three parietal circuits for
number processing,” in Handbook of mathematical cognition, ed J. I. D. Campbell
(New York, NY: Psychology Press), 433–453.

Desoete, A., Stock, P., Schepens, A., Baeyens, D., and Roeyers, H. (2009).
Classification, seriation, and counting in grades 1, 2, and 3 as two-year longitu-
dinal predictors for low achieving in numerical facility and arithmetical achieve-
ment? J. Psychoeduc. Assess. 27, 252–264. doi: 10.1177/0734282908330588

Deterding, S. (2012). Gamification: designing for motivation. Interactions 19,
14–17. doi: 10.1145/2212877.2212883

Devine, A., Soltész, F., Nobes, A., Goswami, U., and Szűcs, D. (2013). Gender
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